Никелевые сплавы - definição. O que é Никелевые сплавы. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Никелевые сплавы - definição

СМЕСЬ МЕТАЛЛОВ
Сплавы; Сплавы (металлов)

Никелевые сплавы      

сплавы на основе никеля (См. Никель). Способность никеля растворять в себе значительное количество др. металлов и сохранять при этом пластичность привела к созданию большого числа Н. с. Полезные свойства Н. с. в определенной степени обусловлены свойствами самого никеля, среди которых наряду со способностью образовывать твёрдые растворы со многими металлами выделяются ферромагнетизм, высокая коррозионная стойкость в газовых и жидких средах, отсутствие аллотропических превращений.

С конца 19 в. сравнительно широко используются Медно-никелевые сплавы, обладающие высокой пластичностью в сочетании с высокой коррозионной стойкостью, ценными электрическими и др. свойствами. Практическое применение находят сплавы типа Монель-металла, которые наряду с куниалями (См. Куниаль) выделяются среди конструкционных материалов высокой химической стойкостью в воде, кислотах, крепких щёлочах, на воздухе,

Важную роль в технике играют ферромагнитные сплавы Ni (40-85\%) с Fe, относящиеся к классу магнитно-мягких материалов (См. Магнитно-мягкие материалы). Среди этих материалов имеются сплавы, характеризующиеся наивысшим значением магнитной проницаемости (см. Пермаллой), её постоянством (см. Перминвар), сочетанием высокой намагниченности насыщения и магнитной проницаемости (см. Перменорм). Такие сплавы применяют во многих областях техники, где требуется высокая чувствительность рабочих элементов к изменению магнитного поля.

Сплавы с 45-55\% Ni, легированные в небольших количествах Cu или Со, обладают коэффициентом линейного термического расширения, близким к коэффициенту линейного термического расширения стекла, что используется в тех случаях, когда необходимо иметь герметичный контакт между стеклом и металлом (см. также Ковар).

Сплавы Ni с Со (4 или 18\%) относятся к группе магнитострикционных материалов (См. Магнитострикционные материалы). Благодаря хорошей коррозионной стойкости в речной и морской воде такие сплавы являются ценным материалом для гидроакустической аппаратуры.

В начале 20 в. стало известно, что жаростойкость Ni на воздухе, достаточно высокая сама по себе, может быть улучшена путём введения Al, Si или Cr. Из сплавов такого типа важное практическое значение благодаря хорошему сочетанию термоэлектрических свойств и жаростойкости сохраняют сплав никеля с Al, Si и Mn (Алюмель) и сплав Ni с 10\% Cr (Хромель). Хромель-алюмелевые термопары относятся к числу наиболее распространенных термопар, применяемых в промышленности и лабораторной технике. Находят практическое использование также термопары из хромеля и копеля (См. Копель).

Важное применение в технике получили жаростойкие сплавы Ni c Cr - Нихромы. Наибольшее распространение получили нихромы с 80\% Ni, которые до появления хромалей (См. Хромаль) были самыми жаростойкими промышленными материалами. Попытки удешевить нихромы уменьшением содержания в них Ni привели к созданию т. н. ферронихромов, в которых значительная часть Ni замещена Fe. Наиболее распространённой оказалась композиция из 60\% Ni, 15\% Cr и 25\% Fe. Эксплуатационная стойкость большинства нихромов выше, чем ферронихромов, поэтому последние используются, как правило, при более низкой температуре. Нихромы и ферронихромы обладают редким сочетанием высокой жаростойкости и высокого электрического сопротивления (1,05-1,40 мкомм). Поэтому они вместе с хромалями представляют собой два наиболее важных класса сплавов, используемых в виде проволоки и ленты для изготовления высокотемпературных электрических нагревателей. Для электронагревателей в большинстве случаев производят нихромы, легированные кремнием (до 1,5\%) в сочетании с микродобавками редкоземельных, щёлочноземельных или др. металлов. Предельная рабочая температура нихромов этого типа составляет, как правило, 1200 °С, у ряда марок 1250 °С.

Н. с., содержащие 15-30\% Cr, легированные Al (до 4\%), более жаростойки, чем сплавы, легированные Si. Однако из них труднее получить однородную по составу проволоку или ленту, что необходимо для надёжной работы электронагревателей. Поэтому такие Н. с. используются в основном для изготовления жаростойких деталей, не подверженных большим механическим нагрузкам при температурах до 1250 °С.

Во время 2-й мировой войны 1939-45 в Великобритании было начато производство жаропрочных сплавов Ni - Cr - Ti - Al, называемых Нимониками. Эти сплавы, возникшие как результат легирования нихрома (типа X20H80) титаном (2,5\%) и алюминием (1,2\%), имеют заметное преимущество по жаропрочности перед нихромами и специальными легированными сталями. В отличие от ранее применявшихся жаропрочных сталей, работоспособных до 750-800 °С, нимоники оказались пригодными для эксплуатации при более высоких температурах. Появление их послужило мощным толчком для развития авиационных газотурбинных двигателей. За сравнительно короткий срок было создано большое число сложнолегированных сплавов типа нимоник (с Ti, Al, Nb, Ta, Со, Mo, W, В, Zr, Ce, La, Hf) с рабочей температурой 850-1000 °С. Усложнение легирования ухудшает способность сплавов к горячей обработке давлением. Поэтому наряду с деформируемыми сплавами широкое распространение получили литейные сплавы, которые могут быть более легированными, а следовательно, и более жаропрочными (до 1050 °С). Однако для литых сплавов характерны менее однородная структура и, как следствие этого, несколько больший разброс свойств. Опробованы способы создания жаропрочных композиционных материалов (См. Композиционные материалы) введением в никель или Н. с. тугоплавких окислов тория, алюминия, циркония и др. соединений. Наибольшее применение получил Н. с. с высокодисперсными окислами тория (ТД-никель).

Важную роль в технике играют легированные сплавы Ni - Cr, Ni - Mo и Ni - Mn, обладающие ценным сочетанием электрических свойств: высоким удельным электрическим сопротивлением (ρ = 1,3-2,0 мкомм), малым значением температурного коэффициента электрического сопротивления (порядка 10-5 1/°С), малым значением термоэдс в паре с медью (менее 5 мв/°С). По величине температурного коэффициента электрического сопротивления эти сплавы уступают Манганину в интервале комнатных температур, однако, имеют в 3-4 раза большее удельное электрическое сопротивление. Главная область применения таких сплавов - малогабаритные резистивные элементы, от которых требуется постоянство электрических свойств в процессе службы. Элементы изготавливаются, как правило, из микропроволоки или тонкой ленты толщиной 5-20 мкм. Сплавы на основе Ni - Mo и Ni - Cr применяют также для изготовления малогабаритных тензорезисторов, характеризующихся почти линейной зависимостью изменения электрического сопротивления от величины упругой деформации.

Для химической аппаратуры, работающей в высокоагрессивных средах, например в соляной, серной и фосфорной кислотах различной концентрации при температурах, близких к температуре кипения, широко используются сплавы Ni - Mo или Ni - Cr - Mo, известные за рубежом под названием Хастелой, реманит и др., а в СССР - сплавы марок H70M28, Н70М28Ф, Х15Н55М16В, Х15Н65М16В. Эти сплавы превосходят по коррозионной стойкости в подобных средах все известные коррозионностойкие стали.

В практике применяют ещё целый ряд Н. с. (с Cr, Mo, Fe и др. элементами), обладающих благоприятным сочетанием механических и физико-химических свойств, например коррозионностойкие сплавы для пружин, твёрдые сплавы для штампов и др. Помимо собственно Н. с., никель входит как один из компонентов в состав многих сплавов на основе др. металлов (например, Ални сплавы).

Лит.: Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Материалы в машиностроении. Выбор и применение, т. 3 - Специальные стали и сплавы, М., 1968; Химушкин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969; Бабаков А. А., Приданцев М. В., Коррозионностойкие стали и сплавы, М., 1971.

Л. Л. Жуков.

ЖАРОСТОЙКИЕ СПЛАВЫ         
  • Роллс-Ройс «Нин»]], экспонируемого в Музее науки, Лондон.
  • лопатка]] ротора турбины двигателя [[RB199]], из литейного никелевого жаропрочного сплава, бывшая в эксплуатации.
Суперсплавы; Тугоплавкие сплавы; Жаропрочный сплав; Жаростойкие сплавы; Окалиностойкие сплавы; Суперсплав
сплавы на никелевой, железной или железоникелевой основе, содержащие хром, кремний, алюминий, которые образуют (вместе с металлом основы) на поверхности сплава защитные оксидные пленки. Обладают повышенным сопротивлением химическому взаимодействию с газами при высоких температурах.
Жаропрочные сплавы         
  • Роллс-Ройс «Нин»]], экспонируемого в Музее науки, Лондон.
  • лопатка]] ротора турбины двигателя [[RB199]], из литейного никелевого жаропрочного сплава, бывшая в эксплуатации.
Суперсплавы; Тугоплавкие сплавы; Жаропрочный сплав; Жаростойкие сплавы; Окалиностойкие сплавы; Суперсплав

сплавы, имеющие высокое сопротивление ползучести и разрушению при высоких температурах. Применяются как конструкционный материал для деталей двигателей внутреннего сгорания, паровых и газовых турбин, реактивных двигателей, атомно-энергетических установок и др. Высокая Жаропрочность сплавов определяется двумя основными физическими факторами - прочностью межатомных связей в сплаве и его структурой. Обычно необходимую для высокой прочности структуру получают термической обработкой, приводящей к гетерогенизации микроструктуры, чаще всего дисперсионным твердением. В этом случае упрочнение обусловлено главным образом появлением в сплавах равномерно, распределённых весьма мелких частиц химических соединений (интерметаллидов, карбидов и др.) и микроискажениями кристаллической решётки основы сплава, вызванными наличием этих частиц. Соответствующая структура Ж. с. затрудняет образование и движение дислокаций (См. Дислокации), а также повышает количество связей между атомами, одновременно участвующими в сопротивлении деформации. С др. стороны, высокое значение величины межатомных связей позволяет сохранить необходимую структуру при высоких температурах длительное время.

Ж. с. по условиям службы можно разделить на 3 группы: сплавы, которые подвергаются значительным, но кратковременным (секунды - часы) механическим нагрузкам при высоких температурах; сплавы, которые находятся под нагрузкой при высоких температурах десятки и сотни часов; сплавы, которые предназначены для работы в условиях больших нагрузок и высоких температур в течение тысяч, десятков, а иногда сотен тысяч часов. В зависимости от этого существенно меняются требования к структуре сплава. Например, любая причина, обусловливающая неустойчивость структуры сплава при рабочих условиях, вызывает ускорение процессов деформирования и разрушения. Поэтому сплавы, предназначенные для длительной службы, подвергаются специальной стабилизирующей обработке, которая, хотя и может привести к некоторому снижению прочности при кратковременном нагружении, делает сплав более устойчивым к длительному воздействию нагрузок.

Ж. с. классифицируют по их основе: никелевые, железные, титановые, бериллиевые и др. Название по основе даёт представление об интервале рабочих температур, который в зависимости от приложенных нагрузок и длительности их действия составляет 0,4-0,8 температуры плавления основы. Разновидностью Ж. с. являются Композиционные материалы (сплавы, упрочнённые дисперсными частицами тугоплавких окислов или высокопрочными волокнами). Такие материалы характеризуются чрезвычайно высокой стабильностью свойств, мало зависящих от времени пребывания при высоких температурах. В зависимости от назначения Ж. с. изготовляют с повышенным сопротивлением усталости и эрозии, с малой чувствительностью к надрезам, термостойкие, для эксплуатации при значительных, но кратковременных нагрузках и др. Например, Ж. с., используемые в космической технике, должны иметь низкую испаряемость.

Лит.: Гарофало Ф., Законы ползучести и длительной прочности металлов и сплавов, пер. с англ., М., 1968; Курдюмов Г. В., Природа упрочненного состояния металлов, "Металловедение и термическая обработка металлов", 1960, № 10; Розенберг В. М., Ползучесть металлов, М., 1967; Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969.

В. М. Розенберг.

Wikipédia

Сплав

Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.

Сплавы состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплав легирующих и модифицирующих элементов, а также из неудалённых примесей (природных, технологических и случайных).

Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.

Exemplos do corpo de texto para Никелевые сплавы
1. Беда в том, что страна-то по большей части аграрная, и про медно-никелевые сплавы многие даже не слышали.
2. Президент обратил внимание на то, что цены на поставляемые заводу никелевые сплавы не снизились, несмотря на общее снижение цен на металл.
O que é Н<font color="red">и</font>келевые спл<font color="red">а</font>вы - definição, significado,